33 research outputs found

    Effective ergodicity breaking in an exclusion process with varying system length

    Full text link
    Stochastic processes of interacting particles with varying length are relevant e.g. for several biological applications. We try to explore what kind of new physical effects one can expect in such systems. As an example, we extend the exclusive queueing process that can be viewed as a one-dimensional exclusion process with varying length, by introducing Langmuir kinetics. This process can be interpreted as an effective model for a queue that interacts with other queues by allowing incoming and leaving of customers in the bulk. We find surprising indications for breaking of ergodicity in a certain parameter regime, where the asymptotic growth behavior depends on the initial length. We show that a random walk with site-dependent hopping probabilities exhibits qualitatively the same behavior.Comment: 5 pages, 7 figure

    Influence of airway management strategy on "no-flow-time" during an "Advanced life support course" for intensive care nurses – A single rescuer resuscitation manikin study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 1999, the laryngeal tube (VBM Medizintechnik, Sulz, Germany) was introduced as a new supraglottic airway. It was designed to allow either spontaneous breathing or controlled ventilation during anaesthesia; additionally it may serve as an alternative to endotracheal intubation, or bag-mask ventilation during resuscitation. Several variations of this supraglottic airway exist. In our study, we compared ventilation with the laryngeal tube suction for single use (LTS-D) and a bag-mask device. One of the main points of the revised ERC 2005 guidelines is a low no-flow-time (NFT). The NFT is defined as the time during which no chest compression occurs. Traditionally during the first few minutes of resuscitation NFT is very high. We evaluated the hypothesis that utilization of the LTS-D could reduce the NFT compared to bag-mask ventilation (BMV) during simulated cardiac arrest in a single rescuer manikin study.</p> <p>Methods</p> <p>Participants were studied during a one day advanced life support (ALS) course. Two scenarios of arrhythmias requiring defibrillation were simulated in a manikin. One scenario required subjects to establish the airway with a LTS-D; alternatively, the second scenario required them to use BMV. The scenario duration was 430 seconds for the LTS-D scenario, and 420 seconds for the BMV scenario, respectively. Experienced ICU nurses were recruited as study subjects. Participants were randomly assigned to one of the two groups first (LTS-D and BMV) to establish the airway. Endpoints were the total NFT during the scenario, the successful airway management using the respective device, and participants' preference of one of the two strategies for airway management.</p> <p>Results</p> <p>Utilization of the LTS-D reduced NFT significantly (p < 0.01). Adherence to the time frame of ERC guidelines was 96% in the LTS-D group versus 30% in the BMV group. Two participants in the LTS-D group required more than one attempt to establish the LTS-D correctly. Once established, ventilation was effective in 100%. In a subjective evaluation all participants preferred the LTS-D over BMV to provide ventilation in a cardiac arrest scenario.</p> <p>Conclusion</p> <p>In our manikin study, NFT was reduced significantly when using LTS-D compared to BMV. During cardiac arrest, the LTS-D might be a good alternative to BMV for providing and maintaining a patent airway. For personnel not experienced in endotracheal intubation it seems to be a safe airway device in a manikin use.</p

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore